科学研究情况
1、承担项目情况
主持和参与国家自然科学基金等多项国家级、省部级科研项目,具体如下:
1. 国家自然科学基金委青年基金,基于时空特征深度学习的多帧粒子图像测速方法研究,2025.1至2027.12,主持.
2. 军委科技委创新特区项目课题, xxx演化方法, 2023.6至2025.5, 主持.
3. 辽宁省博士科研启动基金计划项目,基于机器学习的水下航行器尾流场估计及特性研究, 2025.7至2027.7,主持.
4. 哈尔滨工程大学项目, 远洋客船智慧社区功能性及平台统一数据规范评估实验等, 2023.11至2024.11, 主持.
5. 中央高校基本科研业务费,基于深度学习的时间解析粒子图像测速方法研究,2024.1至2024.12,主持.
6. 中央高校基本科研业务费,基于数字孪生的无人艇集群协同控制方法研究,2025.1至2025.12,主持.
7. 装备发展部重点专项,xxx,2021.11至2023.12,参与.
8. 军委科技委创新特区项目,xxx,2023.7至2025.6,参与.
2、发表学术论文情况
目前发表高水平论文40余篇,以第一作者和通讯作者发表论文20余篇,其中两篇亮点论文(Featured Article),一篇ESI前1%高被引论文,具体如下:
期刊论文(一作和通讯作者):
[1] Yiming Cao, Changdong Yu*, Pan Li, Chenyi Rong, Junpeng Zhu, Shuaiyu Bao. Multi-frame particle image enhancement based on spatiotemporal feature interaction[J]. Physics of Fluids, 2025, 37(7). (SCI , JCR1区).
[2] Changdong Yu,Zhihao Zhang, Xuyang Liu, Chengbin Yang, Yizhuo Wang, Xiao Liang*. Verification method for formation control of USVs based on virtual-real integration[J]. Ocean Engineering, 2025, 335: 121677. (SCI , JCR1区).
[3] Changdong Yu, Xiaotong Gu, Yuhang Yao, Shihan Wang, Xiao Liang*, Liuliu Pan, Yupeng Xiao. Real-time 6-DoF pose estimation for UUVs based on advanced CNN architecture with adaptive loss constraints[J]. Ocean Engineering, 2025, 333: 121425. (SCI , JCR1区).
[4] Qiangqiang Chen, Baisheng Liu, Changdong Yu*, Mingkai Yang, Haonan Guo. Task Allocation and Saturation Attack Approach for Unmanned Underwater Vehicles[J]. Drones, 2025, 9(2): 115. (SCI , JCR1区).
[5] Changdong Yu, Haoke Yin, Chenyi Rong, Xiao Liang*, Ruijie Li, Xinrong Mo. YOLO-MRS: An efficient deep learning-based maritime object detection method for unmanned surface vehicles[J]. Applied Ocean Research, 2024, 153: 104240. (SCI , JCR1区).
[6] Ruijie Li, Changdong Yu*, Xiangrong Qin, Xin An, Jinpeng Zhao, Wenhui Chuai, Baisheng Liu. YOLO-SGC: A Dangerous Driving Behavior Detection Method With Multiscale Spatial-Channel Feature Aggregation[J]. IEEE Sensors Journal, 2024. (SCI , JCR1区).
[7] Changdong Yu, Xiaojun Bi*, Yiwei Fan. Deep learning for fluid velocity field estimation: A review[J]. Ocean Engineering, 2023, 271: 113693. (SCI , JCR1区,高被引论文).
[8] Changdong Yu, Yongpeng Chang, Xiao Liang*, Chen Liang and Zhengpeng Xie. Deep learning for particle image velocimetry with attentional transformer and cross-correlation embedded [J]. Ocean Engineering, 2024, 292:116522. (SCI , JCR1区).
[9] Changdong Yu, Yongpeng Chang, Xiao Liang* and Yiwei Fan. Robust fluid motion estimator based on attentional transformer [J]. IEEE Transactions on Instrumentation & Measurement, 72: 1-14, 2023. (SCI , JCR1区).
[10] Changdong Yu, Yiwei Fan, Xiaojun Bi*, Yunfei Kuai and Yongpeng Chang. Deep dual recurrence optical flow learning for time-resolved particle image velocimetry[J]. Physics of Fluids, 35(4), 2023. (SCI , JCR1区,Featured Article).
[11] Changdong Yu, Xiaojun Bi*, Yiwei Fan, Yang Han, and Yunfei Kuai. LightPIVNet: An effective convolutional neural network for particle image velocimetry. IEEE Transactions on Instrumentation & Measurement, 70:1–15, 2021. (SCI , JCR1区).
[12] Xiaoyu Wang, Ya Tu, Jun Liu, Guangjie Han, Changdong Yu*, Junhong Cui. Edge-enabled modulation classification in the Internet of Underwater Things based on network pruning and ensemble learning [J]. IEEE Internet of Things Journal, 2023. (SCI , JCR1区).
[13] Changdong Yu, Haozhe Luo, Yiwei Fan, Xiaojun Bi*, and Mingjie He. A cascaded convolutional neural network for two-phase flow PIV of an object entering water. IEEE Transactions on Instrumentation & Measurement, 71:1–10, 2022. (SCI , JCR1区).
[14] Xiaojun Bi, Ankang Liu, Yiwei Fan, Changdong Yu*, Zefeng Zhang. FlowSRNet: A multi-scale integration network for super-resolution reconstruction of fluid flows [J]. Physics of Fluids, 2022, 34(12): 127104. (SCI , JCR1区)
[15] Changdong Yu, Haozhe Luo, Xiaojun Bi*, Yiwei Fan, and Mingjie He. An effective convolutional neural network for liquid phase extraction in two-phase flow PIV experiment of an object entering water. Ocean Engineering, 237:109502, 2021. (SCI , JCR1区).
[16] Changdong Yu, Yiwei Fan, Xiaojun Bi*, Yang Han, and Yunfei Kuai. Deep particle image velocimetry supervised learning under light conditions. Flow Measurement & Instrumentation, 80: 102000, 2021. (SCI , JCR2区).
[17] 张志浩,于长东*,刘百胜,范毅伟.基于双分支残差网络的粒子图像增强方法[J].williamhill中国学学报, 2024,50(04):100-109. (北大核心期刊).
[18] 于长东,刘新阳,陈聪,刘殿勇,梁霄*. 基于多智能体深度强化学习的无人艇集群博弈对抗研究[J]. 水下无人系统学报, 2024, 32(01):79-86.
[19] 毕晓君,何明洁,于长东*,范毅伟. 基于深度学习的液相流粒子图像测速估计[J]. 哈尔滨工程大学学报, 44(04): 622-630, 2023. (EI源期刊).
[20] 于长东,毕晓君*,韩阳,李海云,郐云飞. 基于轻量化深度学习模型的粒子图像测速研究[J]. 光学学报, 2020, 40(07):142-149, 2020. (ESCI, EI源期刊).
会议论文:
[1] Haozhe Luo, Changdong Yu, Selvan R*. Hybrid ladder transformers with efficient parallel-
cross attention for medical image segmentation[C]//International Conference on Medical Imaging with Deep Learning (PMLR), 2022: 808-819.
3、获得授权专利情况
[1] 一种面向多目标的异构无人艇集群分布式协同决策方法, CN202411224245.2
[2] 一种障碍物环境下无人艇集群协同捕获移动目标的方法, CN202410664205.3
[3] 基于微分博弈的水面无人艇进攻受保护目标区域的方法, CN202410208647.7
4、出版学术专著情况